Variational appraoch to Bose gas (c.f. Hartree–Fock)
Put all particles in same single particle state!
$$ \Psi(\br_1,\ldots \br_N) = \prod_{j=1}^N \varphi_0(\br_i)= \frac{1}{\sqrt{N!}}\left(\adop(\varphi_0)\right)^N\ket{\text{VAC}}. $$
$$ H = \sum\left[-\frac{\nabla_i^2}{2m} + V(\br_i)\right], $$
$$ \Psi(\br_1,\ldots \br_N) = \prod_{j=1}^N \varphi_0(\br_i)= \frac{1}{\sqrt{N!}}\left(\adop(\varphi_0)\right)^N\ket{\text{VAC}}. $$
with $\varphi_0(\br)$ the ground state of single particle Hamiltonian$$ \begin{align*} H_\text{int.} &= \sum_{j<k} U(\br_j-\br_k) \\ &= \frac{1}{2}\int d\br_1 d\br_2\, U(\br_1-\br_2)\pdop(\br_1)\pdop(\br_2)\pop(\br_2)\pop(\br_1) \end{align*} $$
Ground state is more complicated, but can use BEC form with $\varphi_0(\br)$ as a variational function
Optimal $\varphi_0(\br)$ obeys Gross–Pitaevskii equation
$$ U(\br-\br’) = U_0\delta(\br-\br’) $$
$$ \langle E \rangle = \frac{\braket{\Psi|H|\Psi}}{\braket{\Psi|\Psi}} $$
$$ \begin{align*} \braket{\Psi|H|\Psi}=N \int d\br \left[\frac{1}{2m}|\nabla\varphi_0|^2+V(\br)|\varphi_0(\br)|^2 \right]\\ +\frac{1}{2}N(N-1)U_0\int d\br |\varphi_0(\br)|^4 \end{align*} $$
Neglect difference between $N$ and $N+1$
$$ \begin{align*} \braket{\Psi|H|\Psi}=N \int d\br \left[\frac{1}{2m}|\nabla\varphi_0|^2+V(\br)|\varphi_0(\br)|^2 \right]\\ +\frac{1}{2}N^2 U_0\int d\br |\varphi_0(\br)|^4 \end{align*} $$
Extremize the functional
$$ \braket{\Psi|H|\Psi} - \mu N \int d\br |\varphi_{0}(\br)|^{2}. $$
$$ \left[-\frac{1}{2m}\nabla^2-\mu+V(\br)+NU_0|\varphi_0(\br)|^2\right]\varphi_0(\br)=0 $$
Define $\varphi(\br)\equiv\sqrt{N}\varphi_{0}(\br)$
$\varphi(\br)$ is condensate wavefunction or order parameter. Obeys Gross–Pitaevskii equation
$$ \left[-\frac{1}{2m}\nabla^2-\mu+V(\br)+U_0|\varphi(\br)|^2\right]\varphi(\br)=0. $$
Fix Lagrange multiplier $\mu$ by $\int d\br\abs{\varphi(\br)}^{2}=N$
$\braket{\Psi|H|\Psi}- \mu \int d\br \abs{\varphi(\br)}^{2}=\braket{\Psi|H-\mu \mathsf{N}|\Psi}$ was extremized under general variations, including change in $N$
$$ \mu=\frac{\partial\braket{\Psi|H|\Psi}}{\partial N}, $$
$\mu$ is identified with the chemical potential.
$$ \left[-\frac{1}{2m}\partial_x^2-\mu+U_0|\varphi|^2\right]\varphi(x)=0. $$
$$ -\frac{1}{2m \xi^2}\phi''+\mu (|\phi|^2-1)\phi(x)=0. $$
$$ -\phi''+(|\phi|^2-1)\phi(x)=0. $$
Near a wall
$$ \varphi(x)=\varphi_{\infty}\tanh \frac{x}{\sqrt{2}\xi} $$
where $x$ is distance from wall, and $\varphi_{\infty}=\sqrt{n}$ is fixed by the density far away.
$$ \begin{align*} \rho(\br)&=|\varphi(\br)|^2,\\ \mathbf{j}(\br)&=-\frac{i}{2m}\left[\varphi^{*}(\br)\left(\nabla\varphi(\br)\right)-\left(\nabla\varphi^{*}(\br)\right)\varphi(\br)\right] \end{align*} $$
$$ \varphi(\br)=\sqrt{\rho(\br)}e^{i\chi(\br)}. $$
$$ \mathbf{v}_{s}\equiv\frac{1}{m}\nabla\chi. $$
Expect $\mathbf{v}_{s}=\frac{1}{m}\nabla\chi$ to be irrotational
$$ \nabla\times \mathbf{v}_s = 0, $$
Equivalently to have vanishing circulation around any closed loop
$$ \oint \mathbf{v}_s\cdot d\mathbf{l}=0 $$
$$ \oint \mathbf{v}_s\cdot d\mathbf{l}=\frac{2\pi \ell}{m},\quad \ell\in\mathbb{Z}, $$
Onsager–Feynmann quantization condition.Localized configuration with finite circulation is a vortex in fluid dynamics
In normal fluid there is no reason for the vorticity to be quantized
$$ \oint \mathbf{v}_s\cdot d\mathbf{l}=\frac{h\ell}{m},\quad \ell\in\mathbb{Z}, $$
shows that this is a truly quantum phenomenon.
A non-zero winding of phase requires that $\rho(\br)$ vanishes at a point (in 2D) or on a line (in 3D)
$$ \varphi(r,\theta)\xrightarrow{r\to\infty} \sqrt{n} e^{i\ell\theta} $$
$$ -f'' -\frac{f'}{s} + \frac{\ell^2 f}{s^2} - f +f^3 =0. $$
Without finding the solution explicitly, show that $f(s)\sim s^\ell$ for small $s$, and $f(s\to\infty) \to 1$.
Region of suppressed density size $\xi$, is vortex core
In three dimensions, vortex core is a line
Find energy of vortex by substituting solution back into energy
$$ \begin{align*} \braket{\Psi|H|\Psi}=\int d\br \left[\frac{1}{2m}|\nabla\varphi|^2+V(\br)|\varphi(\br)|^2 \right]+\frac{1}{2}U_0\int d\br |\varphi(\br)|^4. \end{align*} $$
$$ \Delta E = \int d\br \left[\frac{n^2}{2m\xi^2}(f')^2+\frac{U}{2}n^2 \left(f^2-1\right)^2\right] + \frac{n^2}{2m}\int d\br\, f^2(\nabla\chi)^2 $$
$$ \Delta E = \int d\br \left[\frac{n^2}{2m\xi^2}(f')^2+\frac{U}{2}n^2 \left(f^2-1\right)^2\right] + \frac{n^2}{2m}\int d\br\, f^2(\nabla\chi)^2 $$
First integral is finite: due to density $\neq$ bulk value
Second is KE contribution from winding of vortex
$$ \nabla \chi = \frac{\ell}{r}\hat{\mathbf{e}}_\theta, $$
$$ \Delta E = \text{const.} + \frac{\pi n \ell^2}{m}\log\left(\frac{L}{\xi}\right). $$
Vortices | Magnetostatics |
---|---|
Vortex cores | Wires |
Superfluid velocity $\mathbf{v}_s$ | Magnetic field, $\mathbf{B}$ |
Kinetic Energy | Magnetostatic Energy |
How can we improve Gross–Pitaevskii approximation?
What about excited states?
From now on… uniform condensate with no $V(\br)=0$
$$ H =\sum_\bk \epsilon(\bk)\adop_\bk\aop_\bk + \overbrace{\frac{U_0}{2V}\sum_{\bk_1+\bk_2=\bk_3+\bk_4} \adop_{\bk_1}\adop_{\bk_2}\aop_{\bk_3}\aop_{\bk_4}}^{\equiv H_\text{int}}, $$
$\epsilon(\bk)=\bk^2/2m$, and $V$ the volume
GP approximation to ground state is $\ket{\Psi_\text{GP}} = \frac{1}{\sqrt{N!}}\left(\adop_0\right)^N\ket{\text{VAC}}$
Act with $H_\text{int}$: only terms that contribute have $\bk_3=\bk_4=0$
$$ H_\text{int}\ket{\Psi_\text{GP}} = \frac{U_0}{2V}\sum_{\bk} \adop_{\bk}\adop_{-\bk}\aop_{0}\aop_{0}\ket{\Psi_\text{GP}}. $$
When interactions weak, expect true ground state close to $\ket{\Psi_\text{GP}}$
Most particles in zero momentum state, with few $(\bk, -\bk)$ pairs
Remember that
$$ \aop\ket{N} = \sqrt{N}\ket{N-1},\quad \adop\ket{N} = \sqrt{N+1}\ket{N+1}, $$
$$ \begin{align*} H_\text{int} = \frac{U_0}{2V}\adop_0\adop_0\aop_0\aop_0 + \frac{U_0}{2V}\sum_{\bk\neq0}\left[\adop_{\bk}\adop_{-\bk}\aop_{0}\aop_{0} + \adop_{0}\adop_{0}\aop_{\bk}\aop_{-\bk}+4\adop_\bk\adop_0\aop_0\aop_\bk\right]\\\nonumber +\frac{U_0}{V}\sum_{\substack{\bk_1=\bk_2+\bk_3\\ \bk_{1,2,3}\neq 0}}\left[\adop_{\bk_3}\adop_{\bk_2}\aop_{\bk_1}\aop_0 +\adop_0\adop_{\bk_1}\aop_{\bk_2}\aop_{\bk_3}\right]+\frac{U_0}{2V}\sum_{\substack{\bk_1+\bk_2=\bk_3+\bk_4\\ \bk_{1,2,3,4}\neq 0}} \adop_{\bk_1}\adop_{\bk_2}\aop_{\bk_3}\aop_{\bk_4} \end{align*} $$
Gross–Pitaevskii approximation corresponds to the first term
We now keep second term, and neglect third and fourth
$$ \begin{align*} H_\text{pair} &= \sum_\bk \epsilon(\bk)\adop_\bk\aop_\bk +\frac{U_0}{2V}\adop_0\adop_0\aop_0\aop_0 \nonumber\\ &\quad+\frac{U_0}{2V}\sum_{\bk\neq0}\left[\adop_{\bk}\adop_{-\bk}\aop_{0}\aop_{0} + \adop_{0}\adop_{0}\aop_{\bk}\aop_{-\bk}+4\adop_\bk\adop_0\aop_0\aop_\bk\right] \end{align*} $$
$$ \begin{align*} H_\text{pair} &= \sum_\bk \epsilon(\bk)\adop_\bk\aop_\bk +\frac{U_0}{2V}\adop_0\adop_0\aop_0\aop_0 \nonumber\\ &\quad+\frac{U_0}{2V}\sum_{\bk\neq0}\left[\adop_{\bk}\adop_{-\bk}\aop_{0}\aop_{0} + \adop_{0}\adop_{0}\aop_{\bk}\aop_{-\bk}+4\adop_\bk\adop_0\aop_0\aop_\bk\right] \end{align*} $$
$\adop_0\aop_0 = N - N'$
, with $N'\equiv \sum_{\bk\neq 0} N_\bk $
$\adop_0\adop_0\aop_0\aop_0 = N(N-1) - 2N'N_0+O(N_0^0 )$
$$ \begin{align*} H_\text{pair} = &N\epsilon(0)+\frac{U_0}{2V}N(N-1) +\sum_{\bk\neq 0}\left[\epsilon(\bk)-\epsilon(0)\right]\adop_\bk\aop_\bk\\ &+\frac{U_0}{2V}\sum_{\bk\neq 0}\left[\adop_{\bk}\adop_{-\bk}\aop_{0}\aop_{0} + \adop_{0}\adop_{0}\aop_{\bk}\aop_{-\bk}+2\adop_\bk\adop_0\aop_0\aop_\bk\right] \end{align*} $$
$$ \begin{align*} H_\text{pair} = &N\epsilon(0)+\frac{U_0}{2V}N(N-1) +\sum_{\bk\neq 0}\left[\epsilon(\bk)-\epsilon(0)\right]\adop_\bk\aop_\bk\\ &+\frac{U_0}{2V}\sum_{\bk\neq 0}\left[\adop_{\bk}\adop_{-\bk}\aop_{0}\aop_{0} + \adop_{0}\adop_{0}\aop_{\bk}\aop_{-\bk}+2\adop_\bk\adop_0\aop_0\aop_\bk\right] \end{align*} $$
Weird trick alert! Replace $\adop_0$, $\aop_0$ with $\sqrt{N}$, giving quadratic Hamiltonian (that we can solve)
Let’s see why this is a good approximation.
Consider action of Hamiltonian on state of form $\ket{\Psi'}\otimes\ket{N_0}_0$
$$ \adop_\bk\aop_0\ket{\Psi'}\otimes\ket{N_0}_0 = \left(\adop_\bk \ket{\Psi'}\right)\otimes \aop_0\ket{N_0}_0 = \left(\adop_\bk \ket{\Psi'}\right)\otimes \sqrt{N_0}\ket{N_0-1}_0 $$
$$ \aop_\bk\adop_0\ket{\Psi'}\otimes\ket{N_0}_0 = \left(\aop_\bk \ket{\Psi'}\right)\otimes \adop_0\ket{N_0}_0 = \left(\aop_\bk \ket{\Psi'}\right)\otimes \sqrt{N_0+1}\ket{N_0+1}_0 $$
Ignore the difference between $N_0$ and $N_0+1$
If $N_0$ doesn’t fluctuate much matrix elements of $H_\text{pair}$ are approximately unchanged when replace operator with numbers
Result is Bogoliubov Hamiltonian
$$ \begin{align*} H_\text{pair} &= \sum_\bk \epsilon(\bk)\adop_\bk\aop_\bk +\frac{U_0}{2V}N(N-1) \nonumber\\ &\quad+\frac{U_0n_0}{2}\sum_{\bk\neq0}\left[\adop_{\bk}\adop_{-\bk} + \aop_{\bk}\aop_{-\bk}+2\adop_\bk\aop_\bk\right] \end{align*} $$
$n_0 = N_0/V$ is density of particles in zero momentum state
Hamiltonian diagonalized by Bogoliubov transformation
$$ h = \epsilon\left[\adop_1\aop_1+\adop_2\aop_2\right] + \delta\left[\adop_1\adop_2+\aop_1\aop_2\right] $$
$$ h = \begin{pmatrix} \adop_1 & \aop_2 \end{pmatrix} \begin{pmatrix} \epsilon & \delta \\ \delta & \epsilon \end{pmatrix} \begin{pmatrix} \aop_1 \\ \adop_2 \end{pmatrix}-\epsilon $$
If $\bop_{1,2}$ satisfy usual commutation relations then $$ \Lambda^\dagger \sigma_3 \Lambda = \sigma_3 $$
$$ \Lambda= \begin{pmatrix} \cosh\kappa & \sinh\kappa \\ \sinh\kappa & \cosh\kappa \end{pmatrix} $$
Notice differences from rotation matrix:
$$ h = \begin{pmatrix} \adop_1 & \aop_2 \end{pmatrix} \begin{pmatrix} \epsilon & \delta \\ \delta & \epsilon \end{pmatrix} \begin{pmatrix} \aop_1 \\ \adop_2 \end{pmatrix}-\epsilon $$
$$ \begin{pmatrix} \bop_1 \\ \bdop_2 \end{pmatrix}= \begin{pmatrix} \cosh\kappa & \sinh\kappa \\ \sinh\kappa & \cosh\kappa \end{pmatrix} \begin{pmatrix} \aop_1 \\ \adop_2 \end{pmatrix} $$
$$ \begin{align*} \tanh 2\kappa = \frac{\delta}{\epsilon},\qquad \Omega = \sqrt{\epsilon^2-\delta^2\nonumber}\\ h = \Omega\left[\bdop_1\bop_1+\bdop_2\bop_2\right] + \Omega - \epsilon. \end{align*} $$
What happens if $\delta>\epsilon$?What changes if $\begin{pmatrix} \epsilon & \delta \\ \delta & \epsilon \end{pmatrix}\longrightarrow \begin{pmatrix} \epsilon_1 & \delta \\ \delta & \epsilon_2 \end{pmatrix}$?
$$ \begin{align*} H_\text{pair} &= \sum_\bk \epsilon(\bk)\adop_\bk\aop_\bk +\frac{U_0}{2V}N(N-1) \nonumber\\ &\quad+\frac{U_0n_0}{2}\sum_{\bk\neq0}\left[\adop_{\bk}\adop_{-\bk} + \aop_{\bk}\aop_{-\bk}+2\adop_\bk\aop_\bk\right] \end{align*} $$
$$ \begin{align*} \bop_\bp=\aop_\bp\cosh\kappa_\bp+\adop_{-\bp}\sinh\kappa_\bp\nonumber\\ \tanh2\kappa_\bp=\frac{n_0 U_0}{\epsilon(\bp)+n_0 U_0} \end{align*} $$
$$ H=E_0+\sum_{\bp\neq 0}\omega(\bp)\bdop_\bp \bop_\bp. $$
$$ \omega(\bp) = \sqrt{\epsilon(\bp)\left(\epsilon(\bp)+2U_0n_0\right)} $$
$$ E_0=\frac{1}{2}nU_0 N+\sum_{\bp\neq 0}\frac{1}{2}\left[\omega(\bp)-\epsilon(\bp)-n_0U_0\right] $$
$$ E_0=\frac{1}{2}nU_0 N+\sum_{\bp\neq 0}\frac{1}{2}\left[\omega(\bp)-\epsilon(\bp)-n_0U_0\right] $$
$$ \omega(\bp)\underset{|\bp| \to \infty}{\longrightarrow} \epsilon(\bp) + n_0 U_0 -\frac{(n_0 U_0)^2}{2\epsilon(\bp)} $$
$$ \begin{align*} E_0&=\overbrace{\frac{1}{2}nU_0 N\left[1-\frac{1}{V}\sum_\bp \frac{U_0}{2\epsilon(\bp)}\right]}^{\text{1st and 2nd order PT}}\\ &+\overbrace{\sum_{\bp\neq 0}\frac{1} {2}\left[\omega(\bp)-\epsilon(\bp)-n_0U_0+ \frac{(n_0U_0)^2}{2\epsilon(\bp)}\right]}^{\text{finite}} \end{align*} $$
Term added and subtracted is contribution to the ground state energy in second order perturbation theory
See Appendix and Problem Set 2 for further discussion
$$ \bop_\bk\ket{0}=\left(\cosh\kappa_\bk \aop_\bk+\sinh\kappa_\bk \adop_{-\bk}\right)\ket{0}=0. $$
$$ \ket{0}=\prod_{\bk\neq 0} \exp\left(-\frac{1}{2}\tanh\kappa_\bk\adop_{\bk}\adop_{-\bk}\right)\ket{\Psi_\text{GP}} $$
Show this. If you’ve seen coherent states before, remember that the state $e^{\alpha \adop}\ket{\text{VAC}}$ is an eigenstate of $\aop$ with eigenvalue $\alpha$.
$$ \rho_\bq = \sum_\bk \adop_{\bk-\bq}\aop_\bk $$
$$ \rho_\bq \sim \sqrt{N}\left(\adop_{-\bq} + \aop_{\bq}\right) = \sqrt{N}e^{-\kappa_\bq} \left(\bdop_{-\bq} + \bop_{\bq}\right) $$
$$ e^{-\kappa_\bq} = \sqrt{\frac{\epsilon(\bq)}{\omega(\bq)}} $$
Density fluctuations in ground state $$ \braket{0|\rho_{-\bq}\rho_{\bq}|0} = N\frac{\epsilon(\bq)}{\omega(\bq)}\xrightarrow{\bq\to 0} \frac{N\abs{\bq}}{2mc}. $$ (Used low momentum form of Bogoliubov dispersion) $$ \omega(\bq)\xrightarrow{\bq\to 0} c\abs{\bq} $$ where $c = \sqrt{\frac{n_0U_0}{m}}$ is the speed of sound)
c.f Gross–Pitaevskii ground state (Poissonian fluctuations) $$ \braket{0|\rho_{-\bq}\rho_{\bq}|0} = N $$
Finite fraction of particles have $\bp\neq 0$. Let’s find $\langle N_\bp \rangle$
$N_\bp=\adop_{\bp}\aop_{\bp}$ in terms of Bogoliubov quasiparticles
$$ \adop_{\bp}\aop_{\bp}=(\bdop_\bp\cosh\kappa_{\bp}-\bop_{-\bp}\sinh\kappa_{\bp})(\bop_\bp\cosh\kappa_{\bp}-\bdop_{-\bp}\sinh\kappa_{\bp}) $$
$$ \langle N_\bp\rangle=\langle \adop_{\bp}\aop_{\bp}\rangle = \sinh^2\kappa_{p}\xrightarrow{ \abs{\bp}\ll \xi^{-1}}\frac{mc_s}{2\abs{\bp}} $$
Fraction of atoms not in the condensate $$ \frac{1}{N}\sum_{\bp\neq 0} \langle N_\bp\rangle=\frac{8}{3\sqrt{\pi}}\sqrt{n a^3}, $$ Born approximation for scattering length $a=\frac{mU_0}{4\pi}$
Typical experimental conditions in experiments on ultracold atoms: depletion does not much exceed $0.01$, which justifies GP approximation
Liquid He$^{4}$ is an interacting Bose condensate, but depletion is much larger (condensate fraction $\sim 10\%$
). Bogoliubov not accurate here
Applying a lattice can lead to total depletion and a quantum phase transition out of superfluid state