$$ \nonumber \newcommand{\cN}{\mathcal{N}} \newcommand{\br}{\mathbf{r}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bq}{\mathbf{q}} \newcommand{\bv}{\mathbf{v}} \newcommand{\pop}{\psi^{\vphantom{\dagger}}} \newcommand{\pdop}{\psi^\dagger} \newcommand{\Pop}{\Psi^{\vphantom{\dagger}}} \newcommand{\Pdop}{\Psi^\dagger} \newcommand{\Phop}{\Phi^{\vphantom{\dagger}}} \newcommand{\Phdop}{\Phi^\dagger} \newcommand{\phop}{\phi^{\vphantom{\dagger}}} \newcommand{\phdop}{\phi^\dagger} \newcommand{\aop}{a^{\vphantom{\dagger}}} \newcommand{\adop}{a^\dagger} \newcommand{\bop}{b^{\vphantom{\dagger}}} \newcommand{\bdop}{b^\dagger} \newcommand{\cop}{c^{\vphantom{\dagger}}} \newcommand{\cdop}{c^\dagger} \newcommand{\Nop}{\mathsf{N}^{\vphantom{\dagger}}} \newcommand{\bra}[1]{\langle{#1}\rvert} \newcommand{\ket}[1]{\lvert{#1}\rangle} \newcommand{\inner}[2]{\langle{#1}\rvert #2 \rangle} \newcommand{\braket}[3]{\langle{#1}\rvert #2 \lvert #3 \rangle} \newcommand{\sgn}{\mathrm{sgn}} \newcommand{\abs}[1]{\lvert{#1}\rvert} \newcommand{\brN}{\br_1, \ldots, \br_N} \newcommand{\xN}{x_1, \ldots, x_N} \newcommand{\zN}{z_1, \ldots, z_N} $$
$$ \Psi^{\text{S}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}(\br_1,\ldots,\br_N)=\sqrt{\frac{\prod_{\alpha}N_{\alpha}!}{N!}}\sum_P\varphi_{\alpha_{1}}(\mathbf{r}_{P_1})\varphi_{\alpha_{2}}(\mathbf{r}_{P_2})\cdots\varphi_{\alpha_{N}}(\mathbf{r}_{P_N}), \label{A_OrthoProd} $$
$$ \Psi^{\text{S}}(\br_1,\ldots,\br_N) = \frac{1}{\sqrt{N!}}\sum_P\psi_1(\mathbf{r}_{P_1})\psi_{2}(\mathbf{r}_{P_2})\cdots\psi_{N}(\mathbf{r}_{P_N}). \label{A_NProd} $$
$$ \Phi^{\text{S}}(\br_1,\ldots,\br_N) = \frac{1}{\sqrt{N!}}\sum_P\phi_1(\mathbf{r}_{P_1})\phi_{2}(\mathbf{r}_{P_2})\cdots\phi_{N}(\mathbf{r}_{P_N}). $$
$$ \bra{\Psi}\Phi\rangle = \sum_P \prod_{n=1}^N\bra{\psi_n}\phi_{P_n}\rangle = \operatorname{perm} \bra{\psi_m}\phi_{n}\rangle, \label{A_perm} $$
For SHO
$$ \frac{1}{\sqrt{n!}}\left(\adop\right)^n\ket{0}\longleftrightarrow \psi_n(x) $$
representation using $\aop$, $\adop$ very useful; never need explicit $\psi_n(x)$
We want
$$??\longleftrightarrow \Psi^{\text{S}}(\br_1,\ldots,\br_N)$$
We consider states with different numbers of particles
$\ket{\text{VAC}}$ denotes state with no particles (the vacuum state)
$\adop(\psi)$ creates particle in single particle state $\psi(\br)$
$$ \psi(\br)\longleftrightarrow \adop(\psi)\ket{\text{VAC}}. \label{A_1part} $$
$$ \adop\left(c_1\psi_1+c_2\psi_2\right) = c_1\adop(\psi_1)+c_2\adop(\psi_2). $$
If $\ket{\Psi}$ has $N$ particle state, $\adop(\psi)\ket{\Psi}$ has $N+1$ particles
Since this is orthogonal to the vacuum state
$$ \bra{\text{VAC}} \adop(\psi)\ket{\Psi}=0, $$
for any state $\ket{\Psi}$
Taking the adjoint, this means
$$ \aop(\psi)\ket{\text{VAC}}=0. $$
$$ \Psi^{\text{S}}(\br_1,\ldots,\br_N) \longleftrightarrow \adop(\psi_1)\cdots \adop(\psi_N)\ket{\text{VAC}}. \label{A_NPart} $$
$$ \left[\adop(\psi),\adop(\phi)\right]=0 \label{A_adcommute} $$
for any states $\psi(\br)$ and $\phi(\br)$. Taking the adjoint gives$$ \left[\aop(\psi),\aop(\phi)\right]=0 \label{A_acommute} $$
$$ \bra{\psi}\phi\rangle = \braket{\text{VAC}}{\aop(\psi)\adop(\phi)}{\text{VAC}}. $$
$$ \left[\aop(\psi),\adop(\phi)\right] = \inner{\psi}{\phi}. \label{A_ada} $$
together with $\aop(\psi)\ket{\text{VAC}}=0$ this gives correct inner productShow that this also reproduces the inner product for $N$-particle product states
$$ \adop(\varphi_\alpha)\equiv \adop_\alpha,\quad \aop(\varphi_\alpha)\equiv \aop_\alpha. \label{A_CCRBasis} $$
$$ \begin{align} \left[\aop_\alpha,\aop_\beta\right]=0,\quad \left[\adop_\alpha,\adop_\beta\right]=0,\quad \left[\aop_\alpha,\adop_\beta\right] = \delta_{\alpha\beta}. \end{align} $$
$$ \Psi^{\text{S}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}(\br_1,\ldots,\br_N) \longleftrightarrow\ket{\mathbf{N}} \equiv \prod_\alpha \frac{\left(\adop_\alpha\right)^{N_\alpha}}{\sqrt{N_\alpha!}}\ket{\text{VAC}} $$
$\Nop_{\alpha}\equiv \adop_{\alpha}\aop_{\alpha}$
is number operator for state $\alpha$$$ \label{2nd_quant_NOp} \Nop_{\alpha}\ket{\mathbf{N}}=N_{\alpha}\ket{\mathbf{N}} $$
$$ \begin{align} \left[\aop_{\alpha},\Nop_{\alpha}\right]=\aop_{\alpha}\qquad \left[\adop_{\alpha},\Nop_{\alpha}\right]=-\adop_{\alpha} \label{2nd_quant_NaComm} \end{align} $$
“count then destroy minus destroy then count”
$$ \label{2nd_quant_BasisChange} \ket{\tilde{\varphi}_{\alpha}}=\sum_{\beta} \inner{\varphi_{\beta}}{\tilde{\varphi}_{\alpha}}\ket{\varphi_{\beta}} $$
$$ \tilde{\aop}_{\alpha}^\dagger\equiv\sum_{\beta} \inner{\varphi_{\beta}}{\tilde{\varphi}_{\alpha}}\adop_{\beta} $$
Often we work in position eigenstates ${\ket{\br}}$, so $\inner{\varphi_{\beta}}{\br}=\varphi^{*}_{\beta}(\br)$
Denoting corresponding creation operator as $\pdop(\br)$
$$ \pdop(\br)\equiv\sum_{\beta} \varphi^{*}_{\beta}(\br)\adop_{\beta} $$
$$ \label{2nd_quant_PsiDef} \pop(\br)\equiv\sum_{\beta} \varphi_{\beta}(\br)\aop_{\beta}, $$
$$ \begin{gather} \left[\pop(\br_1),\pdop(\br_2)\right]=\delta(\br_1-\br_2)\nonumber\\ \left[\pop(\br_1),\pop(\br_2)\right]=\left[\pdop(\br_1),\pdop(\br_2)\right]=0. \label{2nd_quant_PositionRelations} \end{gather} $$
If a state $\ket{\Psi}$ has wavefunction $\Psi(x_1,\ldots, x_N)$, show that the wavefunction of the state $\pop(X)\ket{\Psi}$ is the $N-1$ particle wavefunction
$$ \sqrt{N}\Psi(X,x_1,\ldots, x_{N-1}) $$
Hint: Show that is is true for a product state first.
Often use eigenstates of the free particle Hamiltonian $H=\frac{\bp^{2}}{2m}$
$$ \begin{align} \label{2nd_quant_FreeParticleStates} \ket{\bk}=\frac{\exp(i\bk \cdot \br)}{\sqrt{V}}, \quad \bk=2\pi\left(\frac{n_{x}}{L_{x}},\frac{n_{y}}{L_{y}},\frac{n_{z}}{L_{z}}\right),\quad n_{x,y,z}\text{ integer}, \end{align} $$
with $V=L_{x}L_{y}L_{z}$ (periodic b.c.)
Matrix elements of transformation between to position basis ${\ket{\br}}$ are $\bra{\bk}\br\rangle=\exp(-i\bk \cdot \br)/\sqrt{V}$
$$ \label{2nd_quant_PositionAnnihilation} \pdop(\br)\equiv\frac{1}{\sqrt{V}}\sum_{\bk} \exp(-i\bk\cdot\br)\adop_{\bk}, $$
and similarly
$$ \label{2nd_quant_PositionCreation} \pop(\br)\equiv\frac{1}{\sqrt{V}}\sum_{\bk} \exp(i\bk\cdot\br)\aop_{\bk}. $$
What is the wavefunction of the two-particle state
$$ \sum_\bk c_\bk \adop_\bk\adop_{-\bk}\ket{\text{VAC}}? $$
Trickier on account of minus signs! Seek a representation of
$$ \Psi^{\text{A}}(\br_1,\ldots,\br_N) = \frac{1}{\sqrt{N!}}\sum_P (-1)^P\psi_1(\mathbf{r}_{P_1})\psi_{2}(\mathbf{r}_{P_2})\cdots\psi_{N}(\mathbf{r}_{P_N}). \label{A_NProdAnti} $$
Note: overall sign fixed by labelling of states $\psi_j$
If $\Psi^{\text{A}}(\br_1,\ldots,\br_N) \longleftrightarrow \adop(\psi_1)\cdots \adop(\psi_N)\ket{\text{VAC}}$ we’ll need
$$ \left\{\adop(\psi),\adop(\phi)\right\}=0, \label{A_adanticommute} $$
$\{A,B\}\equiv AB+BA$
is anticommutator. Also
$$ \left\{\aop(\psi),\aop(\phi)\right\}=0. \label{A_aanticommute} $$
$\left\{\aop(\psi),\adop(\phi)\right\}=0$
can be deduced from inner product
$$ \bra{\Psi}\Phi\rangle = \sum_P (-1)^P\prod_{n=1}^N\bra{\psi_n}\phi_{P_n}\rangle = \det \bra{\psi_m}\phi_{n}\rangle, \label{A_det} $$
which works out if$$ \left\{\aop(\psi),\adop(\phi)\right\} = \inner{\psi}{\phi}. \label{A_adaanti} $$
Check this.
$$ \begin{gather} \left\{\pop(\br_1),\pdop(\br_2)\right\}=\delta(\br_1-\br_2)\nonumber\\ \left\{\pop(\br_1),\pop(\br_2)\right\}=\left\{\pdop(\br_1),\pdop(\br_2)\right\}=0. \label{2nd_quant_PositionRelationsAnti} \end{gather} $$
Think about the form that the operators $\aop_\alpha$, $\adop_\alpha$ take in the basis of product states. Start with one state $\varphi_\alpha$. What’s the matrix form of $\adop_\alpha$ in terms of states $\ket{N_\alpha}$? Now consider two states. Can you see how the commutation and anticommutation relations can be satisfied?
Notation: $A$ acts on single particle states; $\hat A$ acts on $N$ particles as
$$ \hat A = \sum_{j=1}^N A_j, $$
Example: Hamiltonian for noninteracting particles
$$ \hat H = \sum_{j=1}^N H_j = \sum_{j=1}^N \left[-\frac{\nabla_j^2}{2m}+V(\br_j)\right]. \label{A_H1} $$
Operators of this type are single particle operators
How to represent them using creation and annihilation operators?
$$ A\ket{\varphi_\alpha} = \sum_{\beta} \ket{\varphi_\beta}\braket{\varphi_\beta}{A}{\varphi_\alpha} = \sum_\beta A_{\beta\alpha}\ket{\varphi_\beta} $$
$\ket{\Psi^{\text{S/A}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}$
is$$ \hat A \ket{\Psi^{\text{S/A}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}} = \sum_\beta \left[A_{\beta\alpha_1}\ket{\Psi^{\text{S/A}}_{\beta\alpha_{2}\cdots\alpha_{N}}} +A_{\beta\alpha_2}\ket{\Psi^{\text{S/A}}_{\alpha_1\beta\cdots\alpha_{N}}}+\cdots A_{\beta\alpha_N}\ket{\Psi^{\text{S/A}}_{\alpha_1\alpha_{2}\cdots\beta}}\right] \label{A_1OpAct} $$
$$ \begin{equation} \hat A = \sum_{\alpha\beta}A_{\alpha\beta}\adop_\alpha\aop_\beta \end{equation} $$
acting on state $\ket{\mathbf{N}} \equiv \prod_\alpha \frac{\left(\adop_\alpha\right)^{N_\alpha}}{\sqrt{N_\alpha!}}\ket{\text{VAC}}$We have
$$ \begin{equation} \left[\adop_\alpha\aop_\beta,\adop_\gamma\right]=\adop_\alpha\delta_{\beta\gamma} \end{equation} $$
for bosons and fermions
Commute $\adop_\alpha \aop_\beta$ though each of creation operators in $\ket{\mathbf{N}}$, e.g.
$$ \begin{align} \label{2nd_quant_} \mathop{\hat A}\adop_{\beta}\ket{\text{VAC}}&=\left(\left[\mathop{\hat A},\adop_{\beta}\right]+\adop_{\beta}\mathop{\hat A}\right)\ket{\text{VAC}}\nonumber\\ &=\sum_{\alpha} A_{\alpha \beta} \adop_{\alpha}\ket{\text{VAC}}. \end{align} $$
Try it for a two particle state!
$$ \begin{equation} \hat A = \sum_{\alpha\beta}A_{\alpha\beta}\adop_\alpha\aop_\beta \end{equation} $$
Find matrix element $\braket{\mathbf{N}}{\hat A}{\mathbf{N’}}$ between product states made of orthonormal single particle states
Vanishes unless $N_\beta = N'_\beta-1$ and $N_\alpha = N'_\alpha+1$
we have
$$ \braket{\mathbf{N}}{\hat A}{\mathbf{N'}} = A_{\alpha\beta} \sqrt{N_\alpha N'_\beta}. \label{A_Aab} $$
This formula is not so easy to work out in the first quantized representation. Try it!
$$ \begin{equation} \hat A = \sum_{\alpha\beta}A_{\alpha\beta}\adop_\alpha\aop_\beta \end{equation} $$
Like expectation value of $\mathop{A}$ in single particle state $\sum_{\alpha}a_{\alpha}\ket{\varphi_{\alpha}}$
But $a_\alpha$
are operators not numbers. This is the origin of the name second quantization
Resemblance makes it easy to write down second quantized form
$$ \hat H = \sum_{j=1}^N H_j = \sum_{j=1}^N \left[-\frac{\nabla_j^2}{2m}+V(\br_j)\right]. $$
Second quantized form $$ \label{2nd_quant_H2ndQ} \mathop{\hat H} \equiv \sum_{\alpha,\beta}\braket{\varphi_{\alpha}}{\mathop{H}}{\varphi_{\beta}} \adop_{\alpha}\aop_{\beta}, $$ $H$ is single particle Hamiltonian $H=-\frac{1}{2m}\nabla_{i}^{2}+V(\mathbf{r_{i}})$
If basis $\ket{\varphi_{\alpha}}$ is eigenbasis of $H$: $\braket{\varphi_{\alpha}}{\mathop{H}}{\varphi_{\beta}}=E_{\alpha}\delta_{\alpha \beta}$ and
$$ \begin{align} \label{2nd_quant_Nrep} \mathop{\hat H} \equiv \sum_{\alpha} E_{\alpha} \adop_{\alpha}\aop_{\alpha}=\sum_{\alpha} E_{\alpha} \Nop_{\alpha}. \end{align} $$
In the position basis
$$ \begin{align} \mathop{\hat H}&=\int d\br \left[-\frac{1}{2m}\pdop(\br)\nabla^{2}\pop(\br)+V(\br)\pdop(\br)\pop(\br)\right]\nonumber\\ &=\int d\br \left[\frac{1}{2m}\nabla\pdop(\br)\cdot\nabla\pop(\br)+V(\br)\pdop(\br)\pop(\br)\right], \label{2nd_quant_HPos} \end{align} $$
(integration by parts)
Confirm equality to previous expression using
$$ \pop(\br)\equiv\sum_{\beta} \varphi_{\beta}(\br)\aop_{\beta}, $$
$$ \begin{equation} \label{2nd_quant_HeomFree} \begin{split} i\partial_{t}\pop(\br,t) &= -\left[\mathop{\hat H},\pop(\br,t)\right]\\ &= -\frac{1}{2m}\nabla^{2}\pop(\br,t)+V(\br)\pop(\br,t), \end{split} \end{equation} $$
just the time dependent Schrödinger equation!$$ \label{2nd_quant_spDens} \rho(\mathbf{x})\equiv\delta(\mathbf{x}-\br). $$
Expectation value in single particle state $\varphi(\br)$ is $\rho(\mathbf{x})=\abs{\varphi(\mathbf{x})}^{2}$
Second quantized form of the operator is then
$$ \label{2nd_quant_2ndQDens} \hat\rho(\mathbf{x})\equiv\pdop(\mathbf{x})\pop(\mathbf{x}). $$
$$ \label{2nd_quant_DensIntegral} \hat N=\int d\mathbf{x}, \pdop(\mathbf{x})\pop(\mathbf{x})=\sum_{\alpha} \adop_{\alpha}\aop_{a}=\sum_{\alpha}\Nop_{\alpha}, $$
$$ \label{2nd_quant_DensityExp} \braket{N_{0},N_{1}\ldots}{ \hat\rho(\br)}{N_{0},N_{1}\ldots} = \sum_{\alpha} N_{\alpha}\left|\varphi_{\alpha}(\br)\right|^{2}. $$
Prove using $\pop(\br)\equiv\sum_{\beta} \varphi_{\beta}(\br)\aop_{\beta}$
$\left|\varphi_{\alpha}(\br)\right|^{2}$
is probability to find a particle in state $\alpha$ at position $\br$. Density is weighted by occupation$$ \label{2nd_quant_current} \hat{\mathbf{j}}(\br)=-i\frac{1}{2m}\left[\pdop(\br)\left(\nabla\pop(\br)\right)-\left(\nabla\pdop(\br)\right)\pop(\br)\right]. $$
$$ \begin{align} \label{2nd_quant_FourierComp} \hat\rho_{\bq}\equiv\int d\br\, \hat\rho(\br)e^{-i\bq \cdot \br}=\sum_{\bk} \adop_{\bk-\bq/2}\aop_{\bk+\bq/2}\nonumber\\ \hat{\mathbf{j}}_{\bq}\equiv\int d\br\, \hat{\mathbf{j}}(\br)e^{-i\bq \cdot \br}=\sum_{\bk} \frac{\bk}{m}\adop_{\bk-\bq/2}\aop_{\bk+\bq/2}. \end{align} $$
$$ g(\br,\br’) \equiv N \int d\br_{2}\cdots d\br_{N},\Psi^{*}(\br,\br_{2},\ldots,\br_{N})\Psi(\br’,\br_{2},\ldots,\br_{N}). $$
Show that this can be written as
$$ \label{2nd_quant_SPDensity} g(\br,\br’)= \braket{\Psi}{\pdop(\br)\pop(\br’)}{\Psi} $$
$$ \label{2nd_quant_SPFock} g(\br,\br’) = \sum_{\alpha} N_{\alpha}\varphi_{\alpha}^{*}(\br)\varphi^{}_{\alpha}(\br’). $$
$$ \ket{\text{Fermi sea}} = \prod_{|\bk|<k_F} \adop_\bk\ket{\text{VAC}} $$
$$ \begin{align} g(\br,\br’)&=\frac{1}{V}\sum_{|\bk|<k_{F}} e^{i\bk\cdot(\br’-\br)}=\int_{|\bk|<k_{F}} \frac{d\bk}{(2\pi)^{3}},e^{i\bk\cdot(\br’-\br)}\nonumber\\ &=\frac{k_{F}^{3}}{2\pi^{2}}\left[\frac{\sin\left(k_{F}|\br’-\br|\right)}{(k_{F}|\br’-\br|)^{3}}-\frac{\cos\left(k_{F}|\br’-\br|\right)}{(k_{F}|\br’-\br|)^{2}}\right]. \end{align} $$
Note that $g(\br,\br)=\frac{k_{F}^{3}}{6\pi^{2}}=n$
Acts pairwise on the particles ($B_{jk}=B_{kj}$ for indistinguishable particles.)
$$ \hat B = \sum_{j<k} B_{jk}. $$
Action of $\hat B$ on product state $\ket{\varphi_{\alpha}}_1\ket{\varphi_{\beta}}_2$
in terms of matrix elements
$$ \begin{align} B_{\alpha\beta,\gamma\delta} &= \bra{\varphi_\alpha}_1\bra{\varphi_\beta}_2 B_{12} \ket{\varphi_\gamma}_1\ket{\varphi_\delta}_2\\ \hat B &= \frac{1}{2}\sum_{\alpha\beta\gamma\delta} B_{\alpha\beta,\gamma\delta}\adop_\alpha\adop_\beta\aop_\delta\aop_\gamma,\qquad B_{\alpha\beta,\gamma\delta} = B_{\beta\alpha,\delta\gamma} \end{align} $$
(Note order, which is important for fermions!).
$$ \begin{align} B_{\alpha\beta,\gamma\delta} &= \bra{\varphi_\alpha}_1\bra{\varphi_\beta}_2 B_{12} \ket{\varphi_\gamma}_1\ket{\varphi_\delta}_2\\ \hat B &= \frac{1}{2}\sum_{\alpha\beta\gamma\delta} B_{\alpha\beta,\gamma\delta}\adop_\alpha\adop_\beta\aop_\delta\aop_\gamma. \end{align} $$
Check this works on product states ($N=2$ first)
$$ \braket{\mathbf{N}}{\hat A}{\mathbf{N’}} = A_{\alpha\beta} \sqrt{N_\alpha N’_\beta} $$
For two particle operators
$$ \braket{\mathbf{N}}{\hat B}{\mathbf{N'}} = \left[B_{\alpha\beta,\gamma\delta}\pm B_{\alpha\beta,\delta\gamma}\right] \sqrt{N_\alpha N_\beta N'_\gamma N'_\delta}. \label{A_Babcd} $$
with $N_{\gamma,\delta} = N'_{\gamma,\delta}-1$
and $N_{\alpha,\beta} = N'_{\alpha,\beta}+1$
For fermions the overall sign depends on convention: best to write states explicitly rather than matrix elements
$$ \braket{\mathbf{N}}{\hat B}{\mathbf{N'}} = \left[B_{\alpha\beta,\gamma\delta}\pm B_{\alpha\beta,\delta\gamma}\right] \sqrt{N_\alpha N_\beta N'_\gamma N'_\delta}. $$
Strictly we have
$$ \begin{gather} N'_\gamma N'_\delta \to N'_\gamma (N'_\gamma-1) && \gamma=\delta\\ N_\alpha N_\beta \to N_\alpha (N_\alpha-1) && \alpha=\beta \end{gather} $$
In thermodynamic limit these terms usually make a vanishing contribution when sums replaced with integrals
Exceptions: when a finite fraction of particles are in one state (which occurs for Bose—Einstein condensates). In those cases we end up neglecting $N_\alpha-1$ relative to $N_\alpha$, however!
$$ \hat H_\text{int.} = \sum_{j<k} U(\br_j-\br_k). $$
$$ \hat H_\text{int.} = \frac{1}{2}\int d\br_1 d\br_2, U(\br_1-\br_2)\pdop(\br_1)\pdop(\br_2)\pop(\br_2)\pop(\br_1) $$
$$ \hat H_\text{int.} = \frac{1}{2}\int d\br_1 d\br_2\, U(\br_1-\br_2)\rho(\br_1)\rho(\br_2) \label{A_VNotNormal} $$
Operator order prevents a particle from interacting with itself!$\hat H_\text{int}$ has zero expectation for 1 particle
$$ H = -\frac{1}{2m}\sum_j \frac{\partial^2}{\partial x_j^2} + \overbrace{c\sum_{j<k}\delta(x_j-x_k)}^{\equiv H_\text{int}}. \label{many_LL} $$
has second quantized form
$$ H = \int dx \left[\frac{1}{2}\partial_x\pdop(x)\partial_x\pop(x) + \frac{c}{2}\pdop(x)\pdop(x)\pop(x)\pop(x)\right]. $$
$\pop(x)$, $\pdop(x)$ satisfy the canonical bosonic commutation relationsQFT is a language, but writing something in a new way doesn’t (necessarily) make it easier to solve!