austen.uk/slides/new-rules-tum
Austen Lamacraft and Pieter Claeys
Each site either dead (0) or alive (1)
Fate of cell determined by eight neighbors
Complex behavior!
Dynamical systems with discrete space, time, and degrees of freedom
Interesting for statistical physics:
A quantum analog of CAs
Basis of “quantum supremacy” work by Google and others
What are the similarities and differences? Can we try the same tricks?
When is quantum dynamics harder?
What about measurements?
“Space” is one dimension with cells $x_n=0,1$ $n\in\mathbb{Z}$
Update cells every time step depending on cells in neighborhood
$$ f:\{0,1\}^3\longrightarrow \{0,1\}. $$
$$ x^{t+1}_{n} = f(x^{t}_{n-1},x^{t}_{n},x^{t}_{n+1}) $$
Domain of $f$ is $2^3=8$ possible values for three cells
$2^8=256$ possible choices for the function $f$
List outputs corresponding to inputs: 111, 110, … 000
111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
---|---|---|---|---|---|---|---|
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
give each pixel a random Pokemon type, and then battle pixels against their neighbors, updating each pixel with the winning type (using the Pokemon type chart)
— Matt Henderson (@matthen2) July 2, 2022
we quickly see areas of fire > water > grass > fire, electric sweeping over, ground frontiers taking over etc etc pic.twitter.com/BHgQuKRApR
Notion of a causal “light cone” (45 degree lines)
Variety of possible behaviors: chaos, periodicity, …
No exponential growth (c.f. Lyapunov exponent in continuous systems)
Track number of differences (Hamming distance) between trajectories
Propagating “front” cannot exceed “speed of light”: generally slower
No chance of solving the dynamics of any one CA
Looking for generic properties: natural to consider ensembles
Cell values are now white noise, but $z_t=x_t\oplus y_t$ revealing
Fluctuations of front are larger and average speed $<$ maximum
No elementary CAs are reversible (bijective)! Requires size 4 neighborhood
Reversibility is undecidable above one spatial dimension
$∃$ reversible constructions
$$ x^{t+1}_{n} = f(x^{t}_{n-1},x^{t}_{n},x^{t}_{n+1}) + x^{t-1}_{n},\, \mod 2 $$
$$ x^{t+1}_{n} = x^{t}_{n-1} x^{t-1}_{n} + x^{t}_{n+1} + x^{t}_{n-1}x^{t}_{n+1}\, \mod 2 $$
given these four jigsaw pieces, there is only one way to fill in the rest of the puzzle. The solution ends up drawing a Sierpinski triangle. Can you see why? pic.twitter.com/OvxVz2oehy
— Matt Henderson (@matthen2) May 25, 2022
Each block a permutation of 00, 01, 10, 11
$4!=24$ blocks
Order:
Block 2 is the map $(00, 01, 10, 11) ⟶ (00, 10, 01, 11)$
Exchange, or SWAP gate in quantum information
Can we find an ensemble where front propagates at maximal speed?
Yes! Dual reversible blocks are bijections in both time and space
There are 12 such blocks (out of 24)
Ensemble is Markov in time and space: must have maximal velocity!
For $N=2$ dynamics of $z_t=x_t\oplus y_t$ independent of $x_t$ (or $y_t$)
Recurrence time always $\propto L$ (instead of double exponential)
Edge corresponds to the stationary state of a Markov process (c.f. Claeys and Lamacraft (2020) for quantum case)
$$ (c,d) = f(a,b) = (a + b, a - b), \mod 3 $$
Disjoint regions $A$ and $\bar A$: how much does one tell about the other?
Use mutual information: measure of dependence of random variables
Suggested in this context by Pizzi et al. (2022)
MI defined as $$ I(X;Y) \equiv S(X) + S(Y) - S(X,Y) $$
Vanishes if $p_{(X,Y)}(x,y)=p_X(x)p_Y(y)$
$$ \begin{align} p_{(X,Y)}(0,0)&=p_{(X,Y)}(1,1)=1/2\\ p_{(X,Y)}(1,0)&=p_{(X,Y)}(0,1)=0 \end{align} $$
$$ I(X;Y)=S(X) + S(Y) - S(X,Y)= 1+1-1=1 \text{ bit} $$
$$ I(A;\bar A) = \min(4\lfloor t/2\rfloor, |A|) \text{ bits} $$
Total entropy conserved (c.f Liouville’s theorem)
Entropy of initial distribution is half max, but entropy $S(A)$ saturates at maximal value (thermalization in time $\sim |A|/2$)
This model is not so special! Any of the dual reversible blocks CAs behaves exactly the same!
For reversibility and dual reversibility
$$ I(A;\bar A) = \min(4\lfloor t/2\rfloor, |A|) \text{ bits} $$
$$ \begin{equation} \begin{aligned} \Phi_{\tau}\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right) &=\frac{1}{\sigma^{2}+\tau^{2}}\left(\sigma^{2} \mathbf{S}_{1}+\tau^{2} \mathbf{S}_{2}+\tau \mathbf{S}_{1} \times \mathbf{S}_{2}, \sigma^{2} \mathbf{S}_{2}+\tau^{2} \mathbf{S}_{1}+\tau \mathbf{S}_{2} \times \mathbf{S}_{1}\right) \\ \sigma^{2} &:=\frac{1}{2}\left(1+\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right) \end{aligned} \end{equation} $$
CAs as dynamical systems: chaotic fronts and information dynamics
Dynamical ensembles as a theoretical tool
How can we extend these ideas to quantum systems?
Block CA | Quantum Circuit | |
---|---|---|
Basic unit | Invertible map | Unitary operator (gate) |
Local variable | $z_n \in \{0, 1\}$ | $\ket{\psi_n}\in \mathbb{C}^2$ |
Global state | $z \in \{0,1\}^N $ | $\ket{\Psi(t)}\in \mathbb{C}^{2^N}$ |
Simulation | Easy | Hard |
Model of universal quantum computation
Example of discrete time, many body quantum dynamics
Everyone's doing it!
$n$-qubit unitary has matrix elements $U_{x_1\ldots x_n,x’_1,\ldots, x’_n}$ in computational basis $\ket{0}$, $\ket{1}$
Unitarity means
$$ \sum_{x_1’\ldots x_N’}U_{x_1\ldots x_n,x’_1,\ldots, x’_n} U^\dagger_{x’_1\ldots x’_n,x’’_1,\ldots, x’’_n}=\delta_{x_1,x_1’’}\ldots \delta_{x_N,x_N’’}, $$
$$ \ket{\Psi} = \sum_{x_{1:N}\in \{0,1\}^N} \Psi_{x_1\ldots x_N}\ket{x_1}_1\ket{x_2}_2\cdots \ket{x_N}_N $$
Write $\ket{x_1}_1\ket{x_2}_2\cdots \ket{x_N}_N =\ket{x_1\cdots x_N}=\ket{x_{1:N}}$ for brevity
Operator on $N$ qubits has matrix elements
$$ \mathcal{O}_{x_{1:N},x'_{1:N}} = \bra{x_{1:N}}\mathcal{O}\ket{x'_{1:N}} $$
Work in the basis $\ket{00}$, $\ket{01}$, $\ket{10}$, $\ket{11}$
Simplest example: SWAP gate
$$ \operatorname{SWAP}=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$ \operatorname{SWAP}\ket{10} = \ket{01} $$
$$ \sqrt{\operatorname{SWAP}}=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2}(1+i) & \frac{1}{2}(1-i) & 0 \\ 0 & \frac{1}{2}(1-i) & \frac{1}{2}(1+i) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. $$
$$ \sqrt{\operatorname{SWAP}}\ket{10} = \frac{1}{2}\left[(1+i)\ket{10}+(1-i)\ket{01}\right] $$
Normally matrix-vector multiplication is $O(\operatorname{dim}^2)=2^{2N}$
Gates are sparse so $O(\operatorname{dim})=2^{N}$, but still exponentially hard
For low depth $T<N$ move horizontally instead
$$ \rho_A = \operatorname{tr}_{\bar A}\left[\ket{\Psi}\bra{\Psi}\right]=\operatorname{tr}_{\bar A}\left[\mathcal{U}\ket{\Psi_0}\bra{\Psi_0}\mathcal{U}^\dagger\right] $$
$\rho_A$ very useful for quantifying entanglement
If $\ket{\Psi} = \ket{\psi}_A \otimes \ket{\phi}_{\bar A}$
then $\rho_A = \ket{\psi}_A\bra{\psi}_A$`
Any deviation from product state leads to mixed density matrix
Quantify by entropy of $\rho_A$ (the entanglement entropy)
$$ S_A \equiv -\operatorname{tr}\left[\rho_A\log \rho_A\right]. $$
Each pair in Bell state $ \ket{\Phi^+}_{2n, 2n+1} = \frac{1}{\sqrt{2}}\left[\ket{0}_{2n}\ket{0}_{2n+1}+ \ket{1}_{2n}\ket{1}_{2n+1}\right] $
Reduced density matrix for one member: $\operatorname{tr}_{2}\left[\ket{\Phi^+}_{12}\bra{\Phi^+}_{12}\right] = \frac{1}{2}\mathbb{1}_1$
Entanglement entropy of 1 bit
For a Bell pair consisting of qubits at sites $m$ and $n$:
If $n\in A$, $m\in\bar A$, $\rho_A$ has factor $\mathbb{1}_n$.
If $m, n\in A$ they contribute a factor $\ket{\Phi^+}_{nm}\bra{\Phi^+}_{nm}$ (pure)
Only first case contributes to $ S_A = \min(4\lfloor t/2\rfloor, |A|) \text{ bits} $
Just like mutual information in classical version!
$4\times 4$ unitaries are 16-dimensional
Family of dual unitaries is 14-dimensional
Includes kicked Ising model at particular values of couplings
Dual unitaries not “integrable” but have enough structure to allow many calculations
$$ \mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1} $$
$$ \mathbb{1}\otimes\mathbb{1}\ket{\Phi^+}\bra{\Phi^+}\otimes\ket{\Phi^+}\bra{\Phi^+}\otimes\mathbb{1}\otimes\mathbb{1} $$
$$ \rho_0=\overbrace{\frac{\mathbb{1}}{2}\otimes \frac{\mathbb{1}}{2} \cdots }^{t-1} \otimes\overbrace{\ket{\Phi^+}\bra{\Phi^+} \cdots }^{N_A/2-t+1 } \otimes \overbrace{\frac{\mathbb{1}}{2}\otimes \frac{\mathbb{1}}{2} \cdots }^{t-1} $$
RDM has $2^{\min(2t-2,N_A)}$ non-zero eigenvalues all equal to $\left(\frac{1}{2}\right)^{\min(2t-2,N_A)}$
Converse – maximal entanglement growth implies dual unitary gates – recently proved by Zhou and Harrow (2022)
After $N_A/2 + 1$ steps, reduced density matrix is $\propto \mathbb{1}$
All expectations (with $A$) take on infinite temperature value
$$ \begin{aligned} H_{\text{KIM}}(t) = H_\text{I}[\mathbf{h}] + \sum_{m}\delta(t-n)H_\text{K}\\ H_\text{I}[\mathbf{h}]=\sum_{j=1}^L\left[J Z_j Z_{j+1} + h_j Z_j\right],\qquad H_\text{K} &= b\sum_{j=1}^L X_j, \end{aligned} $$
$$ \begin{aligned} U(n_+) &= \left[U(1_+)\right]^n,\qquad U(1_-) = K I_\mathbf{h}\\ I_\mathbf{h} &= e^{-iH_\text{I}[\mathbf{h}]}, \qquad K = e^{-iH_\text{K}} \end{aligned} $$
$$ \begin{aligned} \mathcal{K} &= \exp\left[-i b X\right]\\ \mathcal{I} &= \exp\left[-iJ Z_1 Z_2 -i \left(h_1 Z_1 + h_2 Z_2\right)/2\right]. \end{aligned} $$
$$ \lim_{L\to\infty} S_A =\min(2t-2,N_A)\log 2, $$
$$ \begin{aligned} \mathcal{K} &= \exp\left[-i b X\right]\\ \mathcal{I} &= \exp\left[-iJ Z_1 Z_2 -i \left(h_1 Z_1 + h_2 Z_2\right)/2\right]. \end{aligned} $$
($q=2$ here) Not satisfied by e.g. $\operatorname{SWAP}$
Maps product states to maximally entangled (Bell) states
Product initial states also work for KIM!
Heisenberg picture: $Z_n(t)=\mathcal{U}^\dagger(t)Z_n \mathcal{U}(t)$
Might use $Z_n(t)$ to evaluate correlation $\langle Z_n(t)Z_m(0) \rangle$
How does $Z_n(t)$ look?
Expand $Z_n(t)$ in products of local operators $X_m$, $Y_m$, $Z_m$, $\mathbb{1}_m$
Typical term $\sim \mathbb{1}_1\otimes \cdots X_{8}\otimes Y_{9} \otimes Z_{10}\cdots \otimes\mathbb{1}_N$
$$ Z_n(t)= \sum_{\mu_{1:N}=\{0,1,2,3\}^N} \mathcal{C}_{\mu_{1:N}}(t) \sigma_1^{\mu_1}\otimes\cdots\otimes \sigma_N^{\mu_N},\qquad \sigma^\mu = (\mathbb{1},X,Y,Z) $$
As time progresses two things (tend to) increase:
Operator spreading closely analogous to chaotic fronts in CAs
Introduce ensemble of random circuits. $\mathcal{C}_{\mu_{1:N}}(t)$ become random
Fluctuating signs mean $\langle Z_n(t)Z_m(0) \rangle$ will tend to average to zero
c.f. a single PCA trajectory appears as white noise
$$ \operatorname{OTOC}_{nm}(t) \equiv \langle Z_n(t)Z_m(0)Z_n(t)Z_m(0)\rangle. $$
$$ \operatorname{OTOC}_{nm}(t)\propto \sum_{\mu_{1:N}}\mathcal{C}_{\mu_{1:N}}^2(t)\left[\delta_{\mu_m,0}+\delta_{\mu_m,3}-\delta_{\mu_m,1}-\delta_{\mu_m,2}\right]. $$
$\operatorname{OTOC}_{nm}(t)\neq 1$ when operator $Z_n(t)$ spreads from site $n$ to $m$
Characteristic speed of propagation is “butterfly velocity” $v_\text{B}$
OTOC quantum analog of bitstring differences $z_t=x_t\oplus y_t$ in CAs.
$\overline{\operatorname{OTOC}}$ can be expressed as a Markov process
Efficiently calculate using Monte Carlo simulations
Aren't quantum computers supposed to do things that classical computers find hard?
Averaging is what enables efficient classical algorithms
For a given circuit (no averaging), no probabilistic interpretation
Unitary evolution not the only game in town!
We can also measure, which we expect to reduce entanglement
Consider measurements with certain rate and density in space
$∃$ phase transition where entanglement vanishes at finite measurement rate (Y Li, X Chen, MPA Fisher (2019), B Skinner, J Ruhman, A Nahum (2019))
Alternative viewpoint: an initially mixed state is purified by (strong enough) measurements (MJ Gullans, DA Huse (2020))
Interesting variation on PCA: choose output $1$ with probability $p$
$p\neq 1/2$ makes dynamics less one-to-one. What happens?
For $0.25\lesssim p\lesssim 0.75$ front propagates to infinity
Outside this region, front dies out
In finite system two copies always merge after exponentially long time (“bad luck”)
Seek connected cluster of sites occupied with probability $x=2p(1-p)$
This is (site) directed percolation
$x\leq 1/2< x_\text{crit}\sim 0.706$ on square lattice: require NN neighbors
Similar phenomenon in coupled map lattices: “synchronization of extended chaotic systems”
Measurements purify state; analogous to non-injective rules in CA
It was a surprise that a mixed state survives finite measurement rate
But… a chaotic front survives non-injective rules (up to a point)
Analogous to forced version of transition (Nahum et al. (2021))
Cellular Automata | Quantum Circuits | |
---|---|---|
Chaos diagonistic | Difference $z^t=x^t\oplus y^t$ | OTOC $\langle Z_n(t)Z_m(0)Z_n(t)Z_m(0)\rangle$ |
Spread of | Mutual information | Entanglement entropy |
Transition via | Non-injectivity | Measurements |
Ensemble | Random maps | Random unitaries |
[Links at austen.uk/slides/new-rules-tum]
Review on random circuits Andrew Potter, Romain Vasseur (2021)
Transition to chaos in CA closely linked to synchronization of extended chaotic systems