austen.uk/slides/quantum-circuits-2-icts for slides
Circuits with special structure $\longrightarrow$ theoretical progress / new insights
Random circuits
Dual unitary circuits
Other possibilities: Clifford (Arijeet’s talk), free fermions, …
$$ Z_n(t)= \sum_{\mu_{1:N}=\{1,x,y,z\}^N} \mathcal{C}_{\mu_{1:N}}(t) \sigma_1^{\mu_1}\otimes\cdots \sigma_N^{\mu_N} $$
$$ \sum_{\mu_{1:N}=\{1,x,y,z\}^N} \mathcal{C}^2_{\mu_{1:N}}(t) = \frac{1}{2^{N-1}} $$
$$ \langle Z_j(t)Z_k(0)\rangle=C_{jk}(t) \equiv \mathcal{C}_{1\cdots \mu_k=z \cdots 1}(t) $$
$$ \operatorname{OTOC}_{jk}(t) \equiv \langle Z_j(t)Z_k(0)Z_j(t)Z_k(0)\rangle $$
$$ \langle \left[Z_k(0),Z_j(t)\right]^2 \rangle $$
$$ \operatorname{OTOC}_{jk}(t) = \frac{1}{2}\langle \left[Z_k(0),Z_j(t)\right]^2 \rangle + 1 $$
$$ \operatorname{OTOC}_{jk}(t) = \frac{1}{2}\langle \left[Z_k(0),Z_j(t)\right]^2 \rangle + 1 $$
$$ \operatorname{OTOC}_{jk}(t)= 2^{N-1} \sum_{\mu_{1:N}}\mathcal{C}_{\mu_{1:N}}^2(t)\left[\delta_{\mu_k,0}+\delta_{\mu_k,3}-\delta_{\mu_k,1}-\delta_{\mu_k,2}\right] $$
$\operatorname{OTOC}_{jk}(t)\neq 1$ after operator $Z_j(t)$ spreads from site $j$ to site $k$
Characteristic speed of propagation of OTOC is “butterfly velocity” $v_\text{B}$
Since OTOC depends on square of the coefficients, a nonzero value survives after averaging over random circuits
OTOC provides one measure of operator spreading
Another question: how many nonzero coefficients $\mathcal{C}_{\mu_{1:N}}$?
Introduce Schmidt decomposition for operators $$ \mathcal{O}_{AB} = \sum_{n=1}^{\min(n^2_A, n^2_B)} \Sigma_n A_n\otimes B_n $$
$\Sigma_n\geq 0$ are operator Schmidt coefficients
$A_n$ and $B_n$ are orthonormal operators on $\mathcal{H}_A$ and $\mathcal{H}_B$ i.e. $\tr\left[A^\dagger_m A_n\right]=\tr\left[B^\dagger_m B_n\right]=\delta_{mn}$
Same entanglement measures as before be applied to evaluate the operator entanglement
Simplest example, analogous to Bell state, is SWAP operator
$$ \operatorname{\mathsf{SWAP}}=\frac{1}{2}\left[X\otimes X+Y\otimes Y+Z\otimes Z + \mathsf{1}\otimes\mathsf{1}\right] $$
$$ U_{j,j+1} = \cos\theta \mathbb{1}_{j,j+1} + i\sin\theta \operatorname{\mathsf{S}}_{j.j+1} $$
No symmetries so results should be generic (“in some sense”)
(real reason) Averaging over circuits simplifies things considerably, sometimes allowing tractable classical description
Choose gates iid. Other options: randomness in space but not time
Recent review: Fisher et al (2023)
$$ \operatorname{OTOC}_{jk}(t) \equiv \langle Z_j(t)Z_k(0)Z_j(t)Z_k(0)\rangle $$
OTOC can be extracted by appropriately contracting indices in $Z_j(t)\otimes Z_j(t)$ (two copies)
When we average over random unitaries, only certain components survive
Single qubit unitaries identified with rotations, so look for scalar operators made from two copies on each site
$$ \mathsf{1}\otimes\mathsf{1},\qquad \frac{1}{3}\left[X\otimes X+Y\otimes Y + Z\otimes Z\right] $$
Different papers prefer different bases. The most popular choice is $$ \mathsf{1}\otimes\mathsf{1},\qquad \operatorname{SWAP} $$ (recall that $\operatorname{\mathsf{SWAP}}=\frac{1}{2}\left[X\otimes X+Y\otimes Y+Z\otimes Z + \mathsf{1}\otimes\mathsf{1}\right]$)
Advantage: generalizes to multiple copies
General set of invariants are generalized SWAP operators corresponding to permutations of copies (for two copies only two permutations)
$$ \mathcal{O}^{(2)}(t)=\overline{O(t) \otimes O(t)} \equiv \overline{O(t)^{\otimes 2}} $$
$$ \begin{align*} \mathsf{O} &\equiv\mathsf{1}\otimes\mathsf{1} \\ \mathsf{1}&\equiv\frac{1}{3}\left[X\otimes X + Y\otimes Y+ Z\otimes Z\right] \end{align*} $$
$$ \mathcal{O}^{(2)}(t) = \sum_{\mathsf{S}_{1:N}\in\{\mathsf{0},\mathsf{1}\}^N} P_{\mathsf{S}_{1:N}}(t)\mathsf{S}_{1:N} $$
Next find how $P_{\mathsf{S}_{1:N}}(t)$ are updated by a single gate (after averaging)
Gate acting on sites $j$ and $j+1$ yields
$$ U^\dagger_{j,j+1}\otimes U^\dagger_{j,j+1} \mathcal{O}^{(2)}(t)U_{j,j+1}\otimes U_{j,j+1} $$
Take $U_{j,j+1}$ of form $$ U_{j,j+1} = V_{j,j+1} u_j \otimes u_{j+1} $$ where $u_j$ and $u_{j+1}$ are single quibit unitaries chosen uniformly
After averaging all non-invariant components vanish and invariant components don’t depend on $u_j$ and $u_{j+1}$
Extract $P_{\mathsf{S}_{1:N}}(t+1)$ using orthgonality $\tr\left[\mathsf{O}\mathsf{1}\right]=0$
$$ P_{\mathsf{S}_{1:N}}(t+1) = \sum_{\mathsf{S}’_j, \mathsf{S}’_{j+1}} P_{\mathsf{S}_1\cdots \mathsf{S}’_j \mathsf{S}’_{j+1}\cdots \mathsf{S}_N}(t)\Omega_{\mathsf{S}’_j \mathsf{S}’_{j+1},\mathsf{S}_j \mathsf{S}_k} $$
Precise form of matrix $\Omega$ depends on $V_{j,j+1}$ “core”
Use conservation of operator norm $\tr\left[O(t)^\dagger O(t)\right]$
$$ \overline{\tr\left[O(t)^\dagger O(t)\right]} = 2\sum_{\mathsf{S}_{1:N}\in{\mathsf{0},\mathsf{1}}^N} P_{\mathsf{S}_{1:N}} $$
$$ \sum_{S_j, S_{j+1}}\Omega_{\mathsf{S}’_j \mathsf{S}’_{j+1},\mathsf{S}_j \mathsf{S}_k} = 1 $$
$$ \begin{align*} \Omega&=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1-a-b & a & b \\ 0 & a & 1-a-b & b \\ 0 & \frac{b}{3} & \frac{b}{3} & \left(1-\frac{2}{3} b\right) \end{array}\right) \\ a&=\frac{1}{3}\left(2 \sin ^{2} \theta+\sin ^{4} \theta\right) \qquad b=\frac{1}{3}\left(\frac{1}{2} \sin ^{2} 2 \theta+2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right) \end{align*} $$
Idea that unitary averages over two copies yields a Markov process on the invariant space goes back to Oliveria, Dahlsten, and Plenio (2007), which was concerned with dynamics of average purity $\gamma\equiv \tr \rho_A^2$
$\bar \gamma$ can be extracted from average of two copies of density matrix $\rho(t)\otimes\rho(t)$. See e.g. Rowlands and Lamacraft (2018) for noisy unitary evolution in continuous time
$$ \begin{align*} \Omega&=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1-a-b & a & b \\ 0 & a & 1-a-b & b \\ 0 & \frac{b}{3} & \frac{b}{3} & \left(1-\frac{2}{3} b\right) \end{array}\right) \end{align*} $$
$$ \mathsf{10} \xleftrightharpoons[a]{a} \mathsf{01} \qquad \mathsf{11} \xleftrightharpoons[b/3]{b} \mathsf{10},\mathsf{01} $$
$$ \mathsf{10} \xleftrightharpoons[a]{a} \mathsf{01} \qquad \mathsf{11} \xleftrightharpoons[b/3]{b} \mathsf{10},\mathsf{01} $$
Diffusive in 1D $\propto \sqrt{t}$
KPZ dynamics in 2D
Efficient simulation of averaged OTOC dynamics via Monte Carlo
Appearance of Markov process a little surprising
$$ \mathcal{O}^{(4)}(t)=\overline{O(t) \otimes O(t) \otimes O(t) \otimes O(t)} \equiv \overline{O(t)^{\otimes 4}} $$
Go through same procedure of identifying invariant states
Evolution of average now involves negative matrix elements
Leads to sign problem in Monte Carlo simulation
Same problem for $\overline{\operatorname{OTOC}}$ in models with number conservation (Rowlands and Lamacraft)
$$ \begin{align*} H_{\text{KIM}}(t) = H_\text{I}[\mathbf{h}] + \sum_{n}\delta(t-n)H_\text{K}\\ H_\text{I}[\mathbf{h}]=\sum_{j=1}^L\left[J Z_j Z_{j+1} + h_j Z_j\right],\qquad H_\text{K} &= b\sum_{j=1}^L X_j \end{align*} $$
$$ \lim_{L\to\infty} S_A =\min(2t-2,N_A)\log 2, $$
$$ S^{(\alpha)}_A = \frac{1}{1-\alpha}\log \text{tr}\left[\rho^\alpha\right]=\frac{1}{1-\alpha}\sum_n p_n^\alpha $$
$$ p_n = \left(\frac{1}{2}\right)^{\min(2t-2,N_A)} $$
After $N_A/2 + 1$ steps, reduced density matrix is $\propto \mathbb{1}$
All expectations (with $A$) take on infinite temperature value
$$ \begin{aligned} \mathcal{K} &= \exp\left[-i b X\right]\\ \mathcal{I} &= \exp\left[-iJ Z_1 Z_2 -i \left(h_1 Z_1 + h_2 Z_2\right)/2\right] \end{aligned} $$
Initial state of NN Bell pairs
8 sites; 4 layers
$$ \mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1} $$
$$ \mathbb{1}\otimes\mathbb{1}\ket{\Phi^+}\bra{\Phi^+}\otimes\ket{\Phi^+}\bra{\Phi^+}\otimes\mathbb{1}\otimes\mathbb{1} $$
$$ \rho_0=\overbrace{\frac{\mathbb{1}}{2}\otimes \frac{\mathbb{1}}{2} \cdots }^{t-1} \otimes\overbrace{\ket{\Phi^+}\bra{\Phi^+} \cdots }^{N_A/2-t+1 } \otimes \overbrace{\frac{\mathbb{1}}{2}\otimes \frac{\mathbb{1}}{2} \cdots }^{t-1} $$
RDM has $2^{\min(2t-2,N_A)}$ non-zero eigenvalues all equal to $\left(\frac{1}{2}\right)^{\min(2t-2,N_A)}$
Converse – maximal entanglement growth implies dual unitary gates – recently proved by Zhou and Harrow (2022)
$4\times 4$ unitaries are 16-dimensional
Family of dual unitaries is 14-dimensional
Includes kicked Ising model at particular values of couplings
Dual unitaries not “integrable” but have enough structure to allow many calculations
($q=2$ here) Not satisfied by e.g. $\operatorname{SWAP}$
Maps product states to maximally entangled (Bell) states
Product initial states also work for KIM!
Piroli et al (2020) studied more general initial states
Foligno and Bertini (2023) study general initial conditions
Claeys and Lamacraft (2020). $v_\text{B}=1$. OTOC grows at maximum speed, c.f. Google experiment
Jonay, Kehmani, Ippoliti (2021). Triunitary circuits (incl. 2+1 dimensions)
Stephen et al (2022). Measurement based quantum computation in 1D using dual unitaries
Sommers, Huse, Gullans (2022). Dual unitary Clifford automata with applications to codes
Suzuki, Mitarai, Fujii (2022). Computational power of dual unitaries
Many more!