$$ \nonumber \newcommand{\br}{\mathbf{r}} \newcommand{\bR}{\mathbf{R}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bq}{\mathbf{q}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bx}{\mathbf{x}} \newcommand{\bz}{\mathbf{z}} \DeclareMathOperator*{\E}{\mathbb{E}} $$
Work with Ariel Barr and Willem Gispen
$$ \overbrace{\left[-\frac{\nabla^2}{2m}+V(\br_i)\right]}^{\equiv H\text{, Hamiltonian}}\psi(\br) = E\psi(\br) $$
$$ \overbrace{\left[\sum_i\left(-\frac{\nabla_i^2}{2m_i}+V(\br_i)\right)+\sum_{i<j}U(\br_i-\br_j)\right]}^{\equiv H}\Psi(\br_1,\ldots \br_N) = E\Psi(\br_1,\ldots \br_N) $$
$$ \begin{align} E_0 &\leq \inf_{\lVert\Psi\rVert=1} \langle \Psi\lvert H\rvert\Psi\rangle\\ \langle \Psi\lvert H\rvert\Psi\rangle &= \int d\br_1\cdots d\br_N \Psi^*(\br_1,\ldots,\br_N)\left[H \Psi\right](\br_1,\ldots,\br_N) \end{align} $$
Challenges
Wavefunctions of restricted form
$$ \Psi(\br_1,\ldots,\br_N)=\psi_1(\br_1)\ldots \psi_N(\br_N). $$
$$ \Psi(\br_1,\ldots,\br_N)\to \Psi(\br_1,\ldots,\br_N)\exp\left(\sum_{i<j}\phi(\br_i-\br_j)\right) $$
$|\Psi(\br_1,\ldots,\br_N)|^2$ a probability distribution, so evaluate
$$ \frac{\langle \Psi\lvert H\rvert\Psi\rangle}{\langle\Psi \vert\Psi\rangle} =\int d\bR\,|\Psi(\bR)|^2\frac{\left[H \Psi\right](\bR)}{\Psi(\bR)} $$
by Monte Carlo sampling. This is Variational Monte Carlo (VMC)
$\Psi(\bR)\sim \textsf{NN}(\bR)$ and optimize!
Carleo and Troyer (2017): lattice models (more later)
many more…
Pfau et al. (2019): Fermi Net
$\exists$ other formulations of QM including Feynman’s path integral
Let’s learn the path integral instead!
$$ \begin{align} i\frac{\partial \psi}{\partial t} &= H\psi\\ \psi(\br_2,t_2) &= \int d\br_1 \mathcal{K}(\br_2,t_2;\br_1,t_1)\psi(\br_1,t_1),\\ \mathcal{K}(\br_2,t_2;\br_1,t_1) &= \int_{\br(t_1)=\br_1 \atop \br(t_2)=\br_2} \mathcal{D}\br(t)\exp\left(i\int_{t'}^t L(\br(t),\dot{\br})\right) \end{align} $$
My machines came from too far away
“Integration over paths” has never been defined
Kac (1949) found a workaround for heat-type equations
\begin{align} \frac{\partial\psi(\br,t)}{\partial t} = \left[\frac{\nabla^2}{2}-V(\br_i)\right]\psi(\br,t) \end{align}
$$ \exp\left(-\int_{t’}^t \left[\frac{1}{2}\dot\br^2 + V(\br)\right]\right) $$
…expresses $\psi(\br,t)$ as expectation…
$$ \psi(\br_2,t_2) = \E_{\br(t)}\left[\exp\left(-\int_{t_1}^{t_2}V(\br(t))dt\right)\psi(\br(t_1),t_1)\right] $$
For $t\to\infty$ only ground state contributes
Spectral representation in terms of $H\varphi_n = E_n\varphi_n$
\begin{align} K(\br_2,t_2;\br_1,t_1) &= \sum_n \varphi_n(\br_2)\varphi^*_n(\br_1)e^{-E_n(t_2-t_1)}\\ &\longrightarrow \varphi_0(\br_2)\varphi^*_0(\br_1)e^{-E_0(t_2-t_1)} \qquad \text{ as } t_2-t_1\to\infty. \end{align}
For identical particles $|\Psi(\br_1,\ldots,\br_N)|^2$ permutation invariant
$\Psi(\br_1,\ldots,\br_N)$ completely symmetric (Bosons) or antisymmetric (Fermions)
$t\to\infty$ limit picks out nodeless (bosonic) ground states
$$ \frac{d\mathbb{P}_\text{FK}}{d\mathbb{P}_\text{B}} = \mathcal{N}\exp\left(-\int_{t_1}^{t_2}V(\br(t))dt\right) $$
$\mathcal{N}$ is a normalization factor. $\mathcal{N}\sim e^{E_0 (t_2-t_1)}$ for $t_2\gg t_1$
More time in $V(\br)<0$ regions; less in $V(\br)>0$.
$|\psi(\br)|^2$ is probability distribution. Connection to path measure?
Consider path passing through $(\br_-,-T/2)$
, $(\br,0)$ and $(\br_+,T/2)$
Overall propagator is
$$ K(\br_+,T/2;\br,0)K(\br,0;\br_-,-T/2;)\sim |\varphi_0(\br)|^2\varphi_0(\br_+)\varphi^*_0(\br_-)e^{-E_0T}. $$
Diffusion between two distributions $p_{\pm T/2}(\br)$ ?
Solution written $p_t(\br) = \varphi_\text{F}(\br,t)\varphi_\text{B}(\br,t)$
$\varphi_\text{F/B}(\br,t)$ obeys forward / backward heat equation
Jamison (1974): process is Markov
$$ d\br_t = d\mathbf{B}_t + \bv(\br_t,t)dt, $$
$V(\br)$
and $p_{\pm T/2}(\br)$
$$ C_T[\mathbf{v}] = \frac{1}{T}\E\left[\int_0^T\left[\frac{1}{2}(\mathbf{v}(\br_t,t))^2 + V(\br_t)\right]dt\right], $$
$$ E_0 = \lim_{T\to\infty} \min_{\bv} C_T[\bv(\br)] $$
$$ C_T[\mathbf{v}]-E_0 = \lim_{T\to\infty} \frac{1}{T} \E_{\mathbb{P}_\bv}\left[\log\left(\frac{d\mathbb{P}_\bv}{d\mathbb{P}_\text{FK}}\right)\right] = \lim_{T\to\infty} \frac{1}{T} D_\text{KL}(\mathbb{P}_\bv\lvert\rvert \mathbb{P}_\text{FK}) $$
When $C_T[\mathbf{v}]/T=E_0$, SDE samples from the FK path measure!
Don’t just get $E_0$, but samples from $|\varphi_0|^2$
$$ \frac{d\mathbb{P}_\text{FK}}{d\mathbb{P}_\text{B}} = \mathcal{N}\exp\left(-\int_{t_1}^{t_2}V(\br(t))dt\right) $$
$$ \frac{d\mathbb{P}_\bv}{d\mathbb{P}_{\text{B}}}=\exp\left(\int \bv(\br_t)\cdot d\br_t - \frac{1}{2}\int |\bv(\br_t)|^2 dt\right). $$
Evaluate the KL divergence
$$ \begin{align} \E_{\mathbb{P}_\bv}\left[\log\left(\frac{d\mathbb{P}_\bv}{d\mathbb{P}_\text{FK}}\right)\right]&=\E_{\mathbb{P}_v}\left[\int \bv(\br_t)\cdot d\br_t+\int dt\left(-\frac{1}{2}|\bv(\br_t)|^2+V(\br_t)\right)\right] - E_0 T\\ &=\E_{\mathbb{P}_\bv}\left[\int \bv(\br_t)\cdot d\mathbf{B}_t+\int dt\left(\frac{1}{2}|\bv(\br_t)|^2+V(\br_t)\right)\right] - E_0 T\\ &=\E_{\mathbb{P}_\bv}\left[\int dt\left(\frac{1}{2}|\bv(\br_t)|^2+V(\br_t)\right)\right] - \lambda T\\ &\geq 0 \end{align} $$
$$ dx_t = dB_t + v(X_t)dt $$
$$ \frac{\partial\rho}{\partial t} =\frac{\partial}{\partial x}\left[\frac{1}{2}\frac{\partial \rho}{\partial x} + U’(x)\rho\right]. $$
$$ \rho_0(x) \propto \exp(-2U(x)). $$
$$ \psi(x,t) = \frac{\rho(x,t)}{\sqrt{\rho_0(x)}}, $$
$$ H = -\frac{1}{2}\frac{\partial^2}{\partial x^2}+ \overbrace{\frac{U'^2- U''}{2}}^{\equiv V(x)}. $$
Zero energy ground state $\varphi_0(x) = \sqrt{\rho_0(x)}\propto \exp(-U(x))$
Drift $v(x) = \varphi_0’(x)/\varphi_0(x)$
$$ H = \frac{1}{2}\left[-\frac{d^2}{dx^2} + x^2\right] $$
Ground state $\varphi_0(x)=\pi^{-1/4}e^{-x^2/2}$
; $E_0=1/2$
Drift $v(x) = - x$ gives OU process
$$ H = \sum_i \frac{1}{2}\left[-\frac{\partial^2}{\partial x_i^2}+x^2\right] + \lambda(\lambda-1)\sum_{i<j} \frac{1}{(x_i-x_j)^2} $$
$$ \Phi_0(x_1,\ldots x_N) = \prod_{i<j}|x_i-x_j|^{\lambda}\exp\left(-\frac{1}{2}\sum_i x_i^2\right) $$
$$ v_i = - x_i + \lambda \sum_{j\neq i} \frac{1}{x_i-x_j} $$
$$ C_T[\mathbf{v}] = \frac{1}{T}\E\left[\int_0^T\left[\frac{1}{2}(\mathbf{v}(\br_t,t))^2 + V(\br_t)\right]dt\right], $$
Suggests strategy:
$\bv_\theta(\br) = \textsf{NN}_\theta(\br)$
$$ \bv_{i,\theta}(\br_1,\ldots,\br_N = \bv_{P(i),\theta}(\br_{P(1)},\ldots,\br_{P(N)}) $$
$$ \br_{t+1} = \br_{t+1} + \Delta\mathbf{B}_t + \bv_\theta(\br_t)\Delta t, $$
$\Delta\mathbf{B}_t\sim \mathcal{N}(0,t)$
We use SOSRA (Rackaukas and Nie, 2018)
Can regard as (recurrent) resnet Neural ODE, (Chen et al., 2018)
Evolve batch of trajectories from final state of previous batch
Batch tracks stationary state of current $\bv_\theta$
$$ C_T[\mathbf{v}] = \frac{1}{T}\E\left[\int_0^T\left[\frac{1}{2}(\mathbf{v}(\br_t,t))^2 + V(\br_t)\right]dt\right], $$
$$ C_T[\bv_\theta] \approx \frac{1}{B T} \sum_{b,t}\left[\frac{1}{2}\bv_\theta\left(\br^{(b)}_t\right)^2 + V\left(\br^{(b)}_t\right)\right]. $$
$$ H = -\frac{\nabla^2}{2} - \frac{1}{|\br|} $$
Ground state $\varphi_0(r) = \pi^{-1/2}e^{-r}$
. $E_0=-\frac{1}{2}$
Drift $v(\br)=-\hat\br$
$$ H = -\frac{\nabla_1^2+\nabla_2^2}{2} - \frac{2}{|\br_1|} - \frac{2}{|\br_2|} + \frac{1}{|\br_1-\br_2|} $$
Ground state spins antisymmetric
Spatial wavefunction symmetric
$\varphi_0(\br_1,\br_2)$ not known exactly but $E_0=-2.903386$
$$ \begin{align} H &= -\frac{\nabla_1^2+\nabla_2^2}{2}+ \frac{1}{|\br_1-\br_2|}\\ &- \sum_{i=1,2}\left[\frac{1}{|\br_i-\hat{\mathbf{z}} R/2|} + \frac{1}{|\br_i+\hat{\mathbf{z}}R/2|}\right] \end{align} $$
Spatial wavefunction again symmetric
Equilibrium proton separation $R=1.401$, $E_0= -1.174476$
$$ \begin{align} H&=\frac{1}{2}\sum_i \left[\nabla_i^2 +\br_i^2\right]+\sum_{i<j}U(\br_i-\br_j)\\ U(\br) &=\frac{g}{\pi s^2}e^{-\br^2/s^2} \end{align} $$
$s=1/2$
)Excited states; angular momentum ↔ non-reversible drift
Fermions?
Lattice models
$$ \begin{align} \partial_t \Psi_{\Huge\circ\Huge\bullet\Huge\circ} &= \Psi_{\Huge\bullet\Huge\circ\Huge\circ}+\Psi_{\Huge\circ\Huge\circ\Huge\bullet}\\ &=\overbrace{ \Psi_{\Huge\bullet\Huge\circ\Huge\circ}+\Psi_{\Huge\circ\Huge\circ\Huge\bullet}-2\Psi_{\Huge\circ\Huge\bullet\Huge\circ}}^{\text{master / forward eq.}} +2 \Psi_{\Huge\circ\Huge\bullet\Huge\circ} \end{align} $$
$$ \frac{\partial\psi(\br,t)}{\partial t} = \left[\frac{\nabla^2}{2}-V(\br_i)\right]\psi(\br,t) $$
$$ \ell(j,v) = q(j) + D_{\text{KL}}\left(v(\cdot|j) \middle\|\middle\| p(\cdot|j)\right) $$
$v(j|k)$ is controlled dynamics, $p(j|k)$ is “passive dynamics”
Bellman equation for the cost to go $\nu(j,t)$
$$ \nu(k,t) = \min_v\left[\ell(k,u) + \E_{j\sim u(\cdot|k)}\nu(j,t+1)\right] $$
Transform to linear equation for desirability $\Psi(j,t) = \exp(-\nu(j,t))$
Optimal dynamics
$$ u^*(j|k)=\frac{p(j|k)\Psi(j)}{\sum_{l}p(l|k)\Psi(l)}, $$
$$ \Psi(k,t) = e^{-q(k)}\sum_{j}p(j|k)\Psi(j,t+1). $$
Any model with FK formula has control rep.!