$$ \nonumber \newcommand{\br}{\mathbf{r}} \newcommand{\bR}{\mathbf{R}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bq}{\mathbf{q}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bx}{\mathbf{x}} \newcommand{\bz}{\mathbf{z}} \DeclareMathOperator*{\E}{\mathbb{E}} $$
Work with Ariel Barr and Willem Gispen
$$ \overbrace{\left[\sum_i\left(-\frac{\nabla_i^2}{2m_i}+V(\br_i)\right)+\sum_{i<j}U(\br_i-\br_j)\right]}^{\equiv H \text{, Hamiltonian}}\Psi(\br_1,\ldots \br_N) = E\Psi(\br_1,\ldots \br_N) $$
$$ \begin{align} E_0 &\leq \inf_{\lVert\Psi\rVert=1} \langle \Psi\lvert H\rvert\Psi\rangle\\ \langle \Psi\lvert H\rvert\Psi\rangle &= \int d\br_1\cdots d\br_N \Psi^*(\br_1,\ldots,\br_N)\left[H \Psi\right](\br_1,\ldots,\br_N) \end{align} $$
Challenges
Wavefunctions of restricted form
$$ \Psi(\br_1,\ldots,\br_N)=\psi_1(\br_1)\ldots \psi_N(\br_N). $$
$$ \Psi(\br_1,\ldots,\br_N)\to \Psi(\br_1,\ldots,\br_N)\exp\left(\sum_{i<j}\phi(\br_i-\br_j)\right) $$
$|\Psi(\br_1,\ldots,\br_N)|^2$ a probability distribution, so evaluate
$$ \frac{\langle \Psi\lvert H\rvert\Psi\rangle}{\langle\Psi \vert\Psi\rangle} =\int d\bR\,|\Psi(\bR)|^2\frac{\left[H \Psi\right](\bR)}{\Psi(\bR)} $$
by Monte Carlo sampling. This is Variational Monte Carlo (VMC)
$\Psi(\bR)\sim \textsf{NN}(\bR)$ and optimize!
Carleo and Troyer (2017): lattice models (more later)
…
Many electrons: Han et al., Pfau et al., Herman et al. (all 2019)
$\exists$ other formulations of QM including Feynman’s path integral
Let’s learn the path integral instead!
$$ \psi(\br_2,t_2) = \E_{\br_t}\left[\exp\left(-\int_{t_1}^{t_2}V(\br_t)dt\right)\psi(\br_{t_1},t_1)\right] $$
FK formula defines path measure $\mathbb{P}_\text{FK}$
Jamison (1974): process is Markovian $$ d\br_t = d\mathbf{B}_t + \bv(\br_t,t)dt $$
Model drift $\bv(\br,t)$ defines measure $\mathbb{P}_\bv$
$D_\text{KL}(\mathbb{P}\bv\lvert\rvert \mathbb{P}\text{FK})=\E_{\mathbb{P}\bv}\left[\log\left(\frac{d\mathbb{P}\bv}{d\mathbb{P}_\text{FK}}\right)\right]$ is our loss function
RL / Optimal Control formulation of QM (Holland, 1977)
$$ \log\left(\frac{d\mathbb{P}_{\bv}}{d\mathbb{P}_\text{FK}}\right) =\ell_T - E_0 T+\log\left(\frac{\varphi_0(\br_0)}{\varphi_0(\br_T)}\right) $$
$$
\ell_T\equiv \int_0^T \bv(\br_t)
\cdot d\mathbf{B}_t+\int_0^T dt\left(\frac{1}{2}|\bv(\br_t)|^2+V(\br_t)\right)
$$
Monte Carlo estimate of $D_\text{KL}(\mathbb{P}\bv\lvert\rvert \mathbb{P}\text{FK})=\E_{\mathbb{P}\bv}\left[\log\left(\frac{d\mathbb{P}\bv}{d\mathbb{P}_\text{FK}}\right)\right]$
$\br^{(b)}_{t}$ from SDE discretization. Analogous to reparameterization trick
$D_\text{KL}(\mathbb{P}\bv\lvert\rvert \mathbb{P}\text{FK})\geq 0$ so $\E_{\mathbb{P}_\bv}\left[\ell_T\right]\geq E_0T$
Suggests strategy:
$\bv_\theta(\br) = \textsf{NN}_\theta(\br)$
$$ \bv_{i,\theta}(\br_1,\ldots,\br_N) = \bv_{P(i),\theta}(\br_{P(1)},\ldots,\br_{P(N)}) $$
$$ \mathbf{h}_i = \boldsymbol{\sigma}_1(\mathbf{r}_i) + \sum_j \boldsymbol{\pi}_1(\mathbf{r}_i-\mathbf{r}_j)\qquad \mathbf{h}_{ij} = \boldsymbol{\Pi}_1(\mathbf{r}_i-\mathbf{r}_j). $$
$\boldsymbol{\sigma}, \boldsymbol{\pi}:\mathbb{R}^d\to \mathbb{R}^H$ and $\boldsymbol{\Pi}:\mathbb{R}^d\to \mathbb{R}^{H\times H}$ NNs
$$ \tilde{\mathbf{h}}_i = \boldsymbol{\sigma}_2(\mathbf{h}_i) + \sum_j \boldsymbol{\pi}_2(\mathbf{h}_{ij})\qquad \tilde{\mathbf{h}}_{ij} = \boldsymbol{\Pi}_2(\mathbf{h}_{ij}). $$
$$ \bv_i = \boldsymbol{\sigma}_3(\tilde{\mathbf{h}}_i) + \sum_j \boldsymbol{\pi}_3(\tilde{\mathbf{h}}_{ij}). $$
$$ H = -\frac{\nabla_1^2+\nabla_2^2}{2} - \frac{2}{|\br_1|} - \frac{2}{|\br_2|} + \frac{1}{|\br_1-\br_2|} $$
Ground state spins antisymmetric; spatial wavefunction symmetric
$\varphi_0(\br_1,\br_2)$ not known exactly but $E_0=-2.903386$
Kato’s cusp condition implemented with skip connections
$$ H = -\frac{\nabla_1^2+\nabla_2^2}{2}+ \frac{1}{|\br_1-\br_2|}- \sum_{i=1,2}\left[\frac{1}{|\br_i-\hat{\mathbf{z}} R/2|} + \frac{1}{|\br_i+\hat{\mathbf{z}}R/2|}\right] $$
Method | H atom | He atom | H2 molecule | H2 molecule (R=2.8) |
---|---|---|---|---|
Numerically exact | -0.5 | -2.903 | -1.173 | -1.071 |
Hartree–Fock | N/A | -2.862(1.4%) | -1.129(3.8%) | |
Ours | -0.497(0.6%) | -2.898(0.2%) | -1.169(0.3%) | -1.068(0.3%) |
$$ \begin{align} H&=\frac{1}{2}\sum_i \left[-\nabla_i^2 +\br_i^2\right]+\sum_{i<j}U(\br_i-\br_j)\\ U(\br) &=\frac{g}{\pi s^2}e^{-\br^2/s^2} \end{align} $$
$s=1/2$
)Excited states; angular momentum ↔ non-reversible drift
Fermions? Dealing with the sign problem
Lattice models
$$ \begin{align} \partial_t \Psi_{\Huge\circ\Huge\bullet\Huge\circ} &= \Psi_{\Huge\bullet\Huge\circ\Huge\circ}+\Psi_{\Huge\circ\Huge\circ\Huge\bullet}\\ &=\overbrace{ \Psi_{\Huge\bullet\Huge\circ\Huge\circ}+\Psi_{\Huge\circ\Huge\circ\Huge\bullet}-2\Psi_{\Huge\circ\Huge\bullet\Huge\circ}}^{\text{master / forward eq.}} +2 \Psi_{\Huge\circ\Huge\bullet\Huge\circ} \end{align} $$
$$ \frac{\partial\psi(\br,t)}{\partial t} = \left[\frac{\nabla^2}{2}-V(\br_i)\right]\psi(\br,t) $$