Physics question:
Mathematical question:
How does many-body unitary evolution cause deviation from an initial product state?
[Unitary normally has structure e.g. from local Hamiltonian]
$\Psi_{s_1s_2}$
.$\Psi_{s_1s_2}=\psi^{(1)}_{s_1}\psi^{(2)}_{s_2}$
are special case.$\Psi_{s_1s_2\cdots s_N}$
is rank $N$ tensor.$$ \sum_{p,q,r,s} A_{pqr} B_{rqsu} C_{pts} $$
$\Psi_{s_1,s_2,\ldots s_N}=\psi_{s_1}\psi_{s_2}\cdots \psi_{s_N}$
$$ H = \sum_j \mathbf{s}_j\cdot \mathbf{s}_{j+1} $$
$U(t)\sim U_1(t)U_2(t)$
with $U_{a}=e^{-iH_a t}$
$$ H_1 = \sum_j \mathbf{s}_{2j}\cdot \mathbf{s}_{2j+1},\qquad H_2 = \sum_j \mathbf{s}_{2j}\cdot \mathbf{s}_{2j-1} $$
$$ U(T)\sim \left[U_1(t)U_2(t)\right]^N $$
$$ \begin{aligned} H_{\text{KIM}}(t) = H_\text{I}[\mathbf{h}] + \sum_{m}\delta(t-n)H_\text{K}\\ H_\text{I}[\mathbf{h}]=\sum_{j=1}^L\left[J Z_j Z_{j+1} + h_j Z_j\right],\qquad H_\text{K} &= b\sum_{j=1}^L X_j, \end{aligned} $$
$$ \begin{aligned} U(n_+) = \left[U(1_+)\right]^n,\qquad U(1_-) = K I_\mathbf{h}\\ I_\mathbf{h} = e^{-iH_\text{I}[\mathbf{h}]}, \qquad K &= e^{-iH_\text{K}}, \end{aligned} $$
$$ \begin{aligned} \mathcal{K} &= \exp\left[-i b X\right]\\ \mathcal{I} &= \exp\left[-iJ Z_1 Z_2 -i \left(h_1 Z_1 + h_2 Z_2\right)/2\right]. \end{aligned} $$
Static disorder, or fully random
Floquet
Motivation: “general” quantum dynamics (no Hamiltonian) with only constraint of locality.
$$ \begin{aligned} C(x,y,t)=\mathop{\text{tr}}\left[O(x,t)O(y,0)\right]\\ O(x,t) = U(t)^\dagger O(x) U(t) \end{aligned} $$
[Chan, De Luca, Chalker (2018)]
$$ C(x,y,t)=\mathop{\text{tr}}\left[U(t)^\dagger O(x)U(t) O(y)\right] $$
[Bertini, Kos, Prosen (2019)] for special models (see later)
In fact consequence of unitarity only
$$ \begin{align} C_\nu^{\alpha\beta}(\nu t,t) = \frac{1}{d} {\rm tr}\left[\mathcal M_{\nu}^{2t}(a^\beta)a^\alpha\right]\\ \mathcal M_{+}(a) = \frac{1}{d} {\rm tr}_1\left[U^\dagger (a\otimes\mathbb{1}) U\right] \end{align} $$
[Gopalakrishnan & Lamacraft (2019)]
$$ (\tilde U)_{ab,cd}=(U)_{ac,bd} $$
$$ \begin{aligned} \mathcal{K} &= \exp\left[-i b X\right]\\ \mathcal{I} &= \exp\left[-iJ Z_1 Z_2 -i \left(h_1 Z_1 + h_2 Z_2\right)/2\right]. \end{aligned} $$
[Bertini, Kos, Prosen (2019)]
$$ \rho^{(A)}_{s_1\cdots s_N,s_1'\cdots s'_{N}} = \sum_{s_{N+1}\cdots s_L} \Psi_{s_1\cdots s_N s_{N+1}\cdots s_L}\bar \Psi_{s'_1\cdots s'_{N}s_{N+1}\cdots s_{L}} $$
$\text{tr}\left[|\Psi\rangle\langle\Psi|\right]^2=1$
define purity$$ \gamma = \text{tr}\left[\rho_A^2\right] $$
$$ S = -\text{tr}\left[\rho_A \log \rho_A\right] $$
$$ S^{(n)}_A = \frac{1}{1-n}\log \text{tr}\left[\rho^n\right] $$
$$ S^{(n)}_A = \frac{1}{1-n}\sum_\alpha \lambda_\alpha^n $$
$\epsilon_\alpha = -\log \lambda_\alpha$
known as entanglement spectrum.[Bertini, Kos, Prosen (2018)]
$$ \lim_{L\to\infty} S^{(n)}_A(t) =\min(2t-2,N)\log 2, $$